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Abstract

A neural network model called lateral interaction in accumulative computation for detection of non-rigid objects from motion of any of

their parts in indefinite sequences of images is presented. Some biological evidences inspire the model. After introducing the model, the

complete multi-layer neural architecture is offered in this paper. The architecture consists of four layers that perform segmentation by gray

level bands, accumulative charge computation, charge redistribution by gray level bands and moving object fusion. The lateral interaction in

accumulative computation associated learning algorithm is also introduced. Some examples that explain the usefulness of the system we

propose are shown at the end of this article.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Multi-layer neural networks; Algorithmic lateral inhibition; Lateral interaction; Accumulative computation; Motion detection

1. Introduction

1.1. Biological motion detection

Motion detection is so important for the adaptation of

most animals that only humans and some evolved primates

can respond to objects with no motion. Many vertebrates

(such as frogs) cannot see objects unless they are in motion.

In humans this limitation persists in the outer part of the

retina. We cannot detect any motion in the outlying ends of

the visual field. Instead of it, a moving object in the

periphery unchains an unconscious reflection that causes

eye rotation, thus placing the moving object in the central

visual field. Motion in the visual field could be detected by

comparing the position of the images perceived in different

moments.

The visual system’s detectors only look at a small part of

the visual field. The problem arises when assigning the true

speed of an object starting from local measurements. In fact,

motion on a single extended line segment does not

determine motion of an object that contains that line

segment (Adelson & Bergen, 1985; Fennema & Thompson,

1979; Hildreth, 1984; Horn & Schunck, 1981; Marr &

Ullman, 1981; Wallach, 1976). Motion parallel to the line is

invisible. This way, a set of possible motions can be the

result of the detected movement. The solution to the so-

called aperture problem is solved if at least two measure-

ments of local component motions in a pixel exist, leading

to the estimation of the velocity of a pattern. In a simple

movement as translation in a plane, the problem is broadly

resolved. Indeed, as 2D velocity is the same for the whole

pattern, in most cases, more than two measurements of local

components are present to estimate 2D velocity. This is not

the case, however, for 3D and rotational motion, where the

real 2D velocity varies from pixel to pixel. That is why, 3D

motion measurement is ambiguous and some additional

restrictions are required to find a unique solution.

When two or more objects move simultaneously in a

limited region of the visual field, we need to distinguish

between motion of the different parts of a particular object

and motion of different objects. Current biological data

suggest that there are several levels in motion analysis in the

visual system (Albright, 1992; Allman, Miezin, & McGuin-

ness, 1985; Andersen & Siegel, 1990; Morrone, Burr, &

Vaina, 1995).

In first place, it is known that the aperture problem for the

translation motion plane is solved in two levels. In the first

level the local motion measurements extract the motion

components that are perpendicular to the elements in
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the image. The second level combines the local motion

measurements of portions of the image with the purpose of

calculating a smaller number of local translation estimates

for the pattern. Finally, a third level integrates the local

estimates of translation motion to calculate more complex

non-local motions (i.e. global rotations). This way, at each

level, motion information spatially located in an area seems

to be combined to calculate less local but more complex

motions (Sereno, 1993).

1.2. Problem statement

Motion plays an important role in our visual under-

standing of the surrounding environment (Mitiche &

Bouthemy, 1996). From visual motion it is possible to

gain insight about the 3D structure of the scene observed

(Faugeras, 1993; Marr, 1982). It may be useful for the

detection of shape (Faugeras, Lustman, & Toscani, 1987),

and for providing information as the relative depth of

moving objects (Tekalp, 1995), and supplying clues about

the material properties of moving objects, such as rigidity

and transparency (Shizawa, 1992). Motion information can

also from the basis of predictions about time-to-impact and

the trajectories of objects moving across a scene (Horn,

1986). Numerous psycho-visual studies have demonstrated

that motion is a significant visual cue. For example, Ullman

(1979) succinctly illustrated the shape from motion effect by

generating a sequence of images corresponding to the

projection of a set of random pixels on a pair of concentric

cylinders rotating in opposite directions. Viewed individu-

ally, the images yield no 3D information, but when viewed

all together they show that the human shape is recognizable

from its characteristic motion. A video showing the motion

of light sources attached to the ankles, knees and wrists of a

person instantly convey the shape of the human form

(Sekuler & Blake, 1994).

The problem we are stating is the discrimination of a set

of non-rigid objects capable of holding our attention in a

scene. These objects are detected from the motion of any of

their parts. Detected in an indefinite sequence of images,

motion allows obtaining the shapes of the moving elements.

Whenever an element stops moving, it does no longer

receive attention. Thus, interest on that particular shape

declines, so that the shape does not belong to the

discriminated objects. In real scenes, not all of the object’s

components move at the same time or may present no

motion at all. For example, the human body (the object, in

this case) is composed of a great number of members that do

not move simultaneously. The system proposed can detect

and even associate all moving parts of the objects present in

the scene.

Thus, the particular problem we are dealing with is

segmentation-from-motion by means of a model based on a

neural architecture close to biology. The neurophysiological

foundations of motion perception have been studied so far

(Hildreth & Royden, 1998), as well as some models for

performing this motion perception in biological systems

implemented in artificial neural networks (Hatsopoulos &

Warren, 1991; Sereno, 1993). But, such networks often

embody a restricted formulation of the motion analysis

problem. Another alternative to motion detection is self-

organization (Marshall, 1998), where there is an extraction

of basic local motion signals from image sequences, and an

integration of multiple motion signals across the image.

A synthetic vision of the biological bases of our approach

is given next. If we accept that in neural networks an

important part of computation is associated to the shape of

the receptive field and to the excitatory and inhibitory

character of its center and periphery, the basic biological

foundation of our approach is that the recurrent and non-

recurrent lateral inhibition defines receptive fields whose

operational description corresponds to kernels in differ-

ences. A spatio-temporal detection is intrinsically per-

formed, which is tuned to the shape of the receptive field.

This way, each receptive field has an optimal response to

those stimuli that are in accordance to its shape. This occurs

in retina, at lateral geniculate body level, and in cortex

columns, where there are vertical structures tuned to

different properties of the stimuli—spatial, spatio-temporal,

orientation columns—(Mountcastle, 1979). The key point

of our approach is that we have used the biological

inspiration at organizational level and computational

principles—what David Marr called computational theory

(Marr, 1974)—but we have eliminated the restriction of the

use of conventional analog operators in neural nets

(weighted sums followed by sigmoid) and we have

substituted the analog calculus by a set of inference rules,

obtaining this way what we have called the algorithmic

lateral inhibition, which gives a mayor computational

capacity to the model. A comparison of our approach to

others will be offered in Section 6.

2. Our approach: lateral interaction in accumulative

computation

Some very interesting models based on biological

evidence have been offered so far (Bülthoff, Little, &

Poggio, 1989; Grossberg & McLaughlin, 1997; Grossberg

& Rudd, 1989; Ross, Grossberg, & Mingolla, 2000; Yuille

& Grzywacz, 1988).

A generic algorithm based on a neural architecture, with

recurrent and parallel computation at each specialized layer,

and sequential computation between consecutive layers, is

presented. Each layer is composed of modules of the same

type. The result of the activity of any layer can be

considered as a classification associating input to output

configurations. The latter are converted as well into input

configurations of the following layer (Mira et al., 1995).

The model proposed is based on an accumulative

computation function, followed by a set of co-operating

lateral interaction processes performed on a functional
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receptive field organized as center-periphery over linear

expansions of their input spaces (Gerstner, Ritz, & van

Hemmen, 1993; Mira, 1993; Moreno-Diaz, Rubio, & Mira,

1969; Wimbauer, Gerstner, & van Hemmen, 1994). We will

introduce both terms.

2.1. Lateral interaction models

The central nervous system is formed by common neural

sets, containing very few or a great number of neurons.

Inside a common group of neurons there is a great number

of short nervous fibers, allowing the signals to spread

horizontally from neuron to neuron inside the group. The

dendrites of some neurons also ramify and are disseminated

in the common set. The neuronal area stimulated by each

nervous fiber is denominated stimulation field.

Let us remember, once again, that the stimulus that

arrives to a neuron can be (1) exciting, also called threshold

stimulus because it is above the necessary threshold for the

excitement, or (2) a sub-threshold stimulus. A sub-threshold

stimulus does not excite the neuron, but it makes it more

excitable for impulses coming from other sources. The

neuron that has become more excitable but that does not

discharge is facilitated. The neural field area where neurons

discharge at a given instant is termed threshold area. The

area to each side where the neurons are facilitated but do not

discharge is denominated facilitated area.

Many times a neural set receives input nervous fibers

from diverse origins. We generally have a primary source

and diverse secondary sources. Generally, the secondary

sources are not enough to cause excitement, but they

facilitate the neurons. Other times, the secondary sources

highly inhibit the neuron set, so that a powerful signal of the

primary source is needed to originate the normal discharge.

Most information is transmitted from one part of the

nervous system to another through several successive

neuronal sets. The neural set facilitation degrees are

controlled by centrifugal nervous fibers. These undoubtedly

help to control the fidelity of signal transmission. The space

type tends to lose lucidity even before the signal begins to be

transmitted across the pathway. However, in a pathway such

as the visual one, lateral inhibitory circuits inhibit the

peripheral neurons and they re-establish a true space

disposition.

In lateral interaction models (Gilbert, Hirsch, & Wiesel,

1990; Mira, Delgado, Alvarez, de Madrid, & Santos, 1993;

Mira, Delgado, Manjares, Ros, & Alvarez, 1996), there is a

layer of modules of the same type with local connectivity.

The response of a given element does not only depend on its

own inputs, but also on the inputs and outputs of the

element’s neighbors. From a computational point of view,

the aim of the lateral interaction nets is to partition the input

space into three regions: center, periphery and excluded.

The following steps have to be followed: (a) processing over

the central region, (b) processing over the feedback of the

periphery zone, (c) comparison of results from these

operations and local decision generation, and (d) distri-

bution over the output space.

2.2. Accumulative computation model

Information conversion and memory are also functions

of the neurons that are related through a synchronous

shot, as stated by Hebb’s law. Every time a certain

sensorial sign crosses a synapse series, these synapses are

more and more able of transmitting the same sign next

time. The memory helps to select the new sensorial

information of importance and to deviate it toward

appropriate areas of storage for future employment or

toward areas that originate corporal responses.

At this point, we introduce the accumulative compu-

tation model (Fernandez & Mira, 1992; Fernandez et al.,

1995). This model basically responds to a sequential

module represented by its charge value. The accumulat-

ive computation process responds with an output called

the module’s charge value. The state value is also called

the permanence value and is generally stored in a

permanence memory. First of all, the module performs

the sum of the charge value using the accumulative

computation function. Note that the result from the

previous operation has to fall between limits vdis

(discharged) and vsat (saturated).

The synaptic vesicles contain a transmitted substance

that, when liberated toward the synaptic fissure, excites or

inhibits the neurons. The excitement or inhibition effect of a

transmitter depends not only on its nature but also on that of

the receiver in the post-synaptic membrane. Besides the

inhibition caused by the button inhibitors acting at the

synapse level—called post-synaptic inhibition—another

inhibition type takes place before the signal arrives to the

synapse. This inhibition type is called pre-synaptic inhi-

bition. The pre-synaptic inhibition requires more time to

develop than the post-synaptic, but once it happens it lasts

much longer. This inhibition enforces the limits among the

stimulated and not stimulated areas of the sensorial

pathway, because it impedes the excessive dissemination

from the sensorial signals to the not excited neurons. This

process is also called increase of the contrast.

When the pre-synaptic terminals are continuously and

repetitively stimulated, on a high frequency basis, the

number of discharges at the post-synaptic neurons is very

high at the beginning, but decrease with time. This is called

the fatigue of the synaptic transmission. Fatigue is a very

important characteristic of the synaptic function, because

when areas of the central nervous system are overexcited,

fatigue is able to cause this excessive excitation to disappear

after a short period. The signal progressively weakening is

usually denominated decrement conductivity. If an appro-

priate time of rest is allowed between the stimuli, the

synapse conduction recovers after high level of fatigue.
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2.3. Double time scale

When an impulse is transmitted from a synaptic

button to a post-synaptic neuron, a certain period of time

is elapsed. This is due to several processes. First there is

the substance discharge through the transmission button.

Secondly, we have the diffusion of the transmitter to the

sub-synaptic neural membrane. In third place, the action

of the transmitter on the membrane, and, finally, the

diffusion of the sodium toward the interior to elevate the

excitation post-synaptic potential until the necessary

value to discharge an action potential is reached. The

minimum period required to perform all these steps is

called the synaptic retard.

Obviously, one of the characteristics of the information

transmitted is quantitative intensity. The different degrees of

intensity can be transmitted using a larger number of

parallel fibers or sending more impulses along one single

fiber. These two mechanisms are spatial and temporal

summation, respectively. Spatial summation is obtained by

means of the effect of adding simultaneous post-synaptic

potentials created by excitement of multiple buttons in very

dispersed areas of the membrane, while temporal sum-

mation is obtained by quickly summing repetitive post-

synaptic potentials.

The proposed algorithm also incorporates the notion of

double time scale at accumulative computation level present

at sub-cellular micro-computation (Fernandez et al., 1995).

The following properties are applicable to this model: (a)

local convergent process around each element, (b) semi-

autonomous functioning, with each element capable of

spatial-temporal accumulation of local inputs at time scale

T, and conditional discharge, and (c) attenuated trans-

mission of these accumulations of persistent coincidences

towards the periphery that integrates at the global time scale

t. Therefore there are two different time scales: (a) local

time T, and (b) global time t ðT p tÞ: Fig. 1 shows the

relationship between both time scales.

3. The multi-layer architecture

The present architecture is inspired by the schematic

representation of the artificial vision as described by Mira,

Delgado, Boticario, and Diez (1995).

Indeed, the architecture of the method described in this

paper basically contemplates the low-level visual proces-

sing stage in a similar way to the representation offered in

Fig. 2.

This work introduces the multi-layer architecture for the

lateral interaction in accumulative computation model

focused towards motion detection in an indefinite sequence

of images. From the low level processing stage of Mira et al.,

the architecture includes cues like extraction of character-

istics, segmentation and classification in its successive

layers.

The lateral interaction model is not affected by the

restrictions caused by the characteristics of the scenes

analyzed as well as those of the high level process. We can

and should consider the lateral interaction model applied to

artificial vision as an isolated piece of any intelligent

processing.

The general lateral interaction in accumulative com-

putation model, as well as the entire multi-layer

architecture that will be later commented, will be able

to fit like a puzzle piece in a whole series of different

scenes of the real world.

The following figure shows the complete modular

computational solution. Fig. 3 shows the four layers that

form the architecture of the lateral interaction in accumu-

lative computation method.

The four layers are

(a) Layer 0: segmentation by gray level bands. This

layer covers the need to segment the image in a

preset group of n gray level bands. The input of

each element in the layer will be the gray level

value of the corresponding image pixel at each

global time instant t. From each element, n values

GLLkðx; y; tÞ are output toward pixel ðx; yÞ of the n

sub-layers (as many as gray level bands established)

at layer 1. These values indicate if the pixel

corresponds to each of the gray level bands.

(b) Layer 1: lateral interaction for accumulative com-

putation. This layer has been designed to obtain the

permanence value PMkðx; y; tÞ by decomposition in

gray level bands. We will have n sub-layers and

each one will memorize the value of the accumu-

lative computation present at global time scale t for

each element. Lateral interaction in this layer is

thought to reactivate the permanence charge of those

elements partially loaded and that are directly or

indirectly connected to elements saturated. The

permanence charge of each element will be offered

to the following layer as output.

(c) Layer 2: lateral interaction for charge redistribution

by gray level bands. Layer 2 is also formed of n

sub-layers. It is handled by means of lateral

interaction charge redistribution among all connected

neighbors holding a minimum charge. Besides

distributing the charge Ckðx; y; tÞ in gray level

Fig. 1. Comparison between local and global time scales.
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bands, at this level, the charge due to the motion of

the background is also diluted. The new charge

obtained at this layer is offered as an output toward

layer 3.

(d) Layer 3: lateral interaction for moving object

fusion. Each element in this layer has an input

from each corresponding element of the n sub-layers

from layer 2. The aim in this layer is the fusion of

the objects. The input charges of each gray level

band are fused, obtaining all the moving objects of

the original image. Output from layer 3 is a set of

objects Sðx; y; tÞ:

3.1. Layer 0: segmentation by gray level bands

An implementation by a modular computation form of

the mechanisms described so far lead us to introduce

a first layer of up to ij elements (one for each image

pixel).

At this layer the external connections for each of the

image pixels are those shown in Fig. 4.

Let GLðx; y; tÞ be the gray level of pixel ðx; yÞ at time

instant t. For each gray level band k, and for each image

pixel ðx; yÞ; we have, at all instant t, the following

algorithm

GLLkðx; y; tÞ

¼
1; if GLðx; y; tÞ [ ½ð256=nÞk; ð256=nÞðk þ 1Þ½

0; otherwise

(

where n is the total number of gray level bands, and, k is

a specific gray level band.

In other words, we have to determine in which gray

level band a certain pixel falls. At this level, we are not

Fig. 2. Schematic representation of the artificial vision process.
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evaluating if there is motion in a gray level band for a

given pixel. This task is performed in the following

layer.

It must be clear that one, and only one output of all the

detecting modules of the gray level bands can be activated at

a given instant. This fact, although obvious, is of a great

relevance at higher layers of the architecture, since it will

prevent possible conflicts among the values offered by the

different gray level bands. Indeed, only one gray level band

will contain valid values.

3.2. Layer 1: lateral interaction for accumulative

computation

At this layer a series of connections of modular

structures in a mesh form are proposed (Fig. 5). This

way all lines will be interconnected to each other, and so

will the columns. It is also necessary to keep in mind

that this layer is made up of n sub-layers (as many as

chosen gray level bands).

Each node in the mesh can be considered as the basic

structure. Lateral connections are called ACT1.

We can algorithmically formulate the behavior desired

for our modules lying on five different steps.

3.2.1. Step 1

Step 1 is performed at global time scale t. Permanence

memory charge or discharge is accomplished by motion

detection. This information, given as an input from

layer 0, is associated to sub-layer k in layer 1 (gray level

Fig. 3. Multi-layer configuration.

Fig. 4. Layer 0. External connections.
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band k)

PMkðx;y;tÞ

¼

vdis; ifGLLkðx;y;tÞ;0

vsat; ifGLLkðx;y;tÞ;1>GLLkðx;y;t2DtÞ;0

PMkðx;y;t2DtÞ2vdm; ifGLLkðx;y;tÞ;1>GLLkðx;y;t2DtÞ;1

8>>><
>>>:

where vdm is the discharge value due to motion detection, if

this sub-layer k is informed that pixel ðx;yÞ belongs to the

gray level band k. Note that Dt determines the sequence

frame rate and is given by the capacity of the model’s

implementation to process one input image. This sequence

frame will greatly depend on the figure size.

There are three possibilities at each element ðx; yÞ

† The sub-layer does not correspond to the gray level band

of the image pixel, and the permanence value is

discharged down to value vdis.

† The sub-layer corresponds to the gray level band of the

image pixel at time instant t, and it did not correspond to

the gray level band at the previous instant t 2 Dt: The

permanence value is loaded to the maximum of

saturation vsat.

† The sub-layer corresponds to the gray level band of the

image pixel at time instant t, and it did also correspond to

the gray level band at instant t 2 Dt: The permanence

value is discharged the value v.dm (discharge value due

to motion detection); of course, the permanence value

cannot be under a minimum value vdis

PMkðx; y; tÞ ¼
PMkðx; y; tÞ; if PMkðx; y; tÞ . vdis

vdis; otherwise

(

The discharge of a pixel by a quantity of vdm is the way

to stop paying attention to a pixel of the image that

had captured our interest in the past. As it will be seen

later on, if a pixel is not directly or indirectly bound by

means of lateral interaction mechanisms to a maximally

charged pixel (vsat), it deceases to total discharge with

time.

Step 1 also incorporates the setting at 1/0 of the variable

OPENk

OPENkðx; y; tÞ ¼
1; if vdis , PMkðx; y; tÞ , vsat

0; otherwise

(

The meaning of this variable is as follows

† The variable at 0 indicates that the structure has closed its

input lateral interaction channels, and therefore, it will

not accept any stimulus from the neighboring elements;

Fig. 5. Layer 1. Sub-layer k. External connections.
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the variable takes this value when the permanence

memory value is either totally charged or totally

discharged.

† The variable at 1 indicates that the structure has opened

its input lateral interaction channels to receive any

stimulus from the neighboring elements; the variable

takes this value when the permanence memory value is

charged, but not saturated.

3.2.2. Step 2

In Step 2 those pixels with maximum permanence value

(saturated pixels) inform their neighbors through specific

channels, that is, the channels of type ACT1out

ACT1out=up ¼ ACT1out=down ¼ ACT1out=right ¼ ACT1out=left

¼
1; if PMkðx; y; tÞ ; vsat

0; otherwise

(

These two previous steps occur in normal time space t. The

two following steps occur in an iterative way in a different

space of time T p t: The value of DT will determine the

number of times the mean value is calculated. Notice that

the relation between DT and Dt will establish the influence

outreach of saturated pixels.

3.2.3. Step 3

In Step 3 an extra charge vrv (charge value due to

vicinity) is added to the permanence memory in those image

pixels that receive an ACT1in stimulus from any of the four

neighboring pixels. This can only be performed if a series of

requirements are met. These conditions are met where

lateral activation occurs. Evidently, the permanence mem-

ory cannot be loaded above the maximum value vsat.

Notice that the permanence memory can only be

recharged once. This fact is handled by means of the

variable OPENk.

IF ðOPENkðx; y;TÞ ¼¼ 1Þ THEN {

PMkðx; y; TÞ ¼ PMkðx; y; T 2 DTÞ þ vrv;

OPENkðx; y;TÞ ¼ 0; if ACT1in/up ; 1 <
ACT1in/down ; 1 < ACT1in/right ; 1 <
ACT1in/left ; 1

PMkðx; y; TÞ ¼ vsat; if PMkðx; y;TÞ . vsat

}

This last recharge mechanism is the lateral interaction

mechanism at layer 1 level (for each sub-layer of gray level

band), and allows maintaining an active attention in the

pixels with a certain charge. This mechanism is even able to

reinforce the permanence memory value if the value of vrv is

greater than that of vdm.

3.2.4. Step 4

Step 4 is similar to Step 2. The difference stands in that

not only the maximally charged pixels are contemplated, but

also those with an intermediate charge, and previously

warned by the lateral input signals to retransmit the signals

received

3.2.5. Step 5

Again at global time scale t, the permanence value at

each pixel ðx; yÞ is thresholded and sent to the next layer

PMkðx; y; tÞ ¼
PMkðx; y; tÞ; if PMkðx; y; tÞ . uper

uper; otherwise

(

In order to explain the central idea of layer 1, we will say

that the activation toward the lateral modular structures

(up, below, right and left) is based on the following basic

ideas

1. All modular structures with maximum permanence

value vsat (saturated) inform their neighbors (they

output the charge toward the neighbors).

2. All modular structures with non-saturated charge value

that have been activated from some neighbor, allow

this information to pass through them (they behave as

transparent structures to the charge passing).

3. The modular structures with minimum permanence

value vdis (discharged) stop the passing of the charge

information toward the neighbors (they behave as

opaque structures).

Therefore, an explosion of lateral activation takes place

starting at the structures with permanence memory set at

vsat, and it spreads in the direction of its four closer

neighbors, until a structure with discharged permanence

memory appears in the pathway.

Table 1 shows how to appropriately use the relationship

between the values of vdm and vrv depending on the

objectives proposed.

3.3. Layer 2: lateral interaction for charge redistribution

by gray level bands

Starting from the values of the permanence memory in

each pixel on a gray level band basis, we will

experience how it is possible to obtain all the parts of an

ACT1out=up ¼ ACT1out=down ¼ ACT1out=right

¼ ACT1out=left

1; if PMkðx; y; TÞ ; vsat < PMkðx; y; TÞ . vdis > ðACT1in=up ; 1 < ACT1in=down

; 1 < ACT1in=rightðx; y;TÞ ; 1 < ACT1in=left ; 1Þ

0; otherwise

8>><
>>:

A. Fernández-Caballero et al. / Neural Networks 16 (2003) 205–222212



object in movement. An object part concretely means

the union of pixels that are together and in a same gray

level band.

The discrimination of each part composing the object

is equally obtained by lateral cooperation mechanisms.

Again we will connect the modular structures of this

layer in a mesh form. Once again, notice that there are

as many sub-layers in this layer 2 as gray level bands

defined.

At layer 2 the charge will be homogenized among all the

pixels in the same gray level band that are directly or

indirectly connected to each other.

Thus, a double objective will be satisfied

1. Diluting the charge due to the false image background

motion along the other pixels of the background. This

way, there should be no presence of background motion,

but we will keep motion of the objects present in the scene.

2. Obtaining a parameter common to all the pixels of the part

of the object with the same gray level band. This common

parameter will be sent to higher levels (layer 3, in

principle) for processing purposes.

The modular structure connections at this level can be

seen just as they are shown in Fig. 6, where the lateral

connections are called ACT2.

The algorithms of layer 2 are also to be explained in four

different steps. Steps 1 and 4 occur on time scale t, whereas

steps 2 and 3 are in time scale T.

3.3.1. Step 1

Initially, the charge value at each pixel ðx; yÞ and at each

sub-layer k is given the value of the permanence value from

Table 1

Appropriate use of relationship between vdm and vrv

Relationship

between vdm and vrv

Explanation

vdm # vrv All pixels with a permanence value between vdis

and vsat and directly or indirectly connected to

pixels with value vsat, take a new value vsat. The

pixel is part of the object while any pixel of the

object moves

vdm . vrv All pixels with a permanence value between vdis

and vsat, and directly or indirectly connected to

pixels with value vsat, will discharge slowly. The

pixels that are far away from the maximally

charged pixels (motion ‘center’) will be slowly

disassociated from the object

vdm q vrv All pixels with a permanence value between vdis

and vsat, and directly or indirectly connected to

pixels with value vsat, will discharge quickly. The

object will be formed by the pixels that have

moved recently

Fig. 6. Layer 2. Sub-layer k. External connections.
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the previous layer

Ckðx; y; tÞ ¼ PMkðx; y; tÞ

3.3.2. Step 2

Recursively, the charge value is spread toward the four

neighbors

ACT2out=up ¼ ACT2out=down ¼ ACT2out=right ¼ ACT2out=left

¼ Ckðx; y;TÞ

3.3.3. Step 3

Provided that the neighbor input charge values are high

enough, the center element ðx; yÞ calculates the mean of its

value and the neighbors partially charged

Cup ¼
ACT2in=up; if ACT2in=up . uper

0; otherwise

(

Cdown ¼
ACT2in=down; if ACT2in=down . uper

0; otherwise

(

Cright ¼
ACT2in=right; if ACT2in=right . uper

0; otherwise

(

Cleft ¼
ACT2in=left; if ACT2in=left . uper

0; otherwise

(

Ckðx;y;TÞ¼meanðCkðx;y;T2DTÞþCupþCdownþCrightþCleftÞ

3.3.4. Step 4

Back to global time scale t, the charge value at each pixel

ðx; yÞ is threshold and sent to the next layer

Ckðx; y; tÞ ¼
Ckðx; y; tÞ; if Ckðx; y; tÞ . uch

uch; otherwise

(

3.4. Layer 3: lateral interaction for moving object fusion

Up to this moment, attention has been captured on any

moving object in the scene by means of cooperative

calculation mechanisms in all gray level bands. Motion

due to the background has also been eliminated. Now a new

objective must be set to clearly distinguish the different

objects as a whole. Properly spoken this is not a classification

preceded by a previous supervised learning, but rather an

auto-classification based on the characteristics found on

layer 2. In other words, it is non-supervised learning.

Object discrimination is achieved equally by lateral

cooperation mechanisms. The modular structures at this

layer are again connected in a mesh form. Nevertheless, it is

not arranged in sub-layers, but rather all the information of

the n sub-layers of layer 2 ends up in a single layer.

At layer 3, the charge values are homogenized among all

the pixels that contain some charge value over a minimum

threshold and that are physically connected to each other.

Lateral connections are called ACT3 in this layer.

The connections of all modular structures of this level

can be seen just as they are shown in Fig. 7.

The algorithmic behavior of the modular structure for

each one of the image pixels is described next.

3.4.1. Step 1

Initially, we define the silhouette charge value at each

pixel ðx; yÞ to be the charge value of the only charged sub-

layer k from the previous layer

FORðk ¼ 1 to nÞSðx; y; tÞ ¼ maxðCkðx; y; tÞÞ

3.4.2. Step 2

Recursively, the charge value is spread toward the four

neighbors

ACT3out=up ¼ ACT3out=down ¼ ACT3out=right ¼ ACT3out=left

¼ Sðx; y;TÞ

3.4.3. Step 3

Provided that the neighbor input charge values are high

enough, the center element ðx; yÞ calculates the mean of its

value and the neighbors partially charged

Cup ¼
ACT3in=up; if ACT3in=up . uch

0; otherwise

(

Cdown ¼
ACT3in=down; if ACT3in=down . uch

0; otherwise

(

Cright ¼
ACT3in=right; if ACT3in=right . uch

0; otherwise

(

Cleft ¼
ACT3in=left; if ACT3in=left . uch

0; otherwise

(

Sðx;y;TÞ¼meanðSðx;y;T2DTÞþCupþCdownþCrightþCleftÞ

3.4.4. Step 4

Back to global time scale t, the silhouette charge value at

each pixel ðx; yÞ is thresholded and sent to the next layer

Sðx; y; tÞ ¼
Sðx; y; tÞ; if Sðx; y; tÞ . uobj

uobj; otherwise

(

4. Learning algorithm in lateral interaction
in accumulative computation

Learning in lateral interaction in accumulative compu-

tation starts from the knowledge of the influence of the basic
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parameters of the model. Learning in lateral interaction in

accumulative computation model consists in adjusting the

parameters of the diverse layers to offer the best processing

result of the image sequence when obtaining the silhouettes

of moving elements present in the scene.

During the learning process, previous to the normal

operation process, the architecture is offered an input image

sequence, as well as the following reinforcement parameters

(see Fig. 8):

† Number of moving elements. ðSmÞ to be detected in the

sequence. This parameter is fixed for a scene and must be

given by the user.

† Maximum size of a silhouette. (Smax) to be detected in the

sequence

† Minimum size of a silhouette. (Smin) to be detected in the

sequence.

Due to its simplicity, it does not seem necessary to

explain the reinforcement parameter Number of moving

elements (Sm). The other two parameters arise from the

domain knowledge of lateral interaction in accumulative

computation model. It is indispensable to introduce

parameters Maximum size of a silhouette (Smax) and

Minimum size of a silhouette (Smin) to capture the attention

on those objects whose silhouette falls between these two

magnitudes. Notice that by varying these two parameters it

is possible to obtain very different results. One may, for

example, center the attention on pedestrians or on cars in a

same visual surveillance scene.

Learning turns, in our case, into an iterative process

where, for a given scene, the model is nurtured by the same

image sequence, just modifying the basic parameters until

the number of silhouettes obtained at layer 3 is close enough

to Number of moving elements (Sm). The output obtained at

layer 3 is called Number of Detected Silhouettes (Sd).

The basic parameters of lateral interaction in accumulat-

ive computation model have been classified into two groups:

(a) Parameters with constant values that do not evolve

during the learning phase. These are vdis (minimum

permanence value) and vsat (maximum permanence

value) at layer 1.

(b) Parameters with values that do evolve during the

learning phase. These are: n (number of gray level

bands) at layer 0; vdm (discharge value due to motion

detection), vrv (recharge value due to vicinity), and, uper

(threshold) at layer 1; uch (threshold) at layer 2; uobj

(threshold) at layer 3.

Thus, we use an error minimization function. The

problem is now to find a procedure of estimating a set of

Fig. 7. Layer 3. External connections.
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values that best leads to the desired solution. In other words,

we have to look for a set of optimal values

Cp ¼ ðnp
; vpdm; v

p
rv; u

p
per; u

p
ch; u

p
objÞ

that minimize error function

E ¼ Sm 2
1

k

Xk

t¼0

SdðtÞ

�����
�����

where k is the number of images that form the learning

sequence, Sm is the number of moving elements to be

detected (constant through the whole training sequence),

SdðtÞ is the number of detected silhouettes at time instant t.

5. Results

We shall demonstrate the usefulness of our neural

network architecture in four layers with some examples.

Some input sequences have been obtained from our own

research team. The rest are image sequences available from

some educational Internet web sites. Note that only three

Fig. 8. Inputs and outputs during learning phase.

Fig. 9. (a) One image of the Pears and nuts image sequence from the MOVI Image Base; (b) result after Layer 1; (c) result after Layer 3.
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Fig. 10. (a) One image of the Chocos image sequence from the MOVI Image Base; (b) result after Layer 1; (c) result after Layer 2; (d) result after Layer 3.

Fig. 11. (a) One image of the Sun glasses over printed paper image sequence from the MOVI Image Base; (b) result after Layer 3.
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frames are needed to obtain accurate segmentation results

for any of the following study cases. Study cases 1 to 3 make

use of some image sequences from the MOVI Image Base,

which offer complex motion situations (translation, or

translation plus rotation) due to camera movement. These

study cases demonstrate the usefulness and versatility of our

method to differentiate figure from ground (case 1), to

obtain the parts of an object (case 2), or to obtain an object

as a whole (case 3), just by using different parameter values

to segment from inherent motion of the image sequences.

Notice, nevertheless, the proposed method offers its best

results when working with a stationary camera (study cases

4–7). This does not mean that the background must be

stationary, as we will appreciate in the examples offered.

The values of the most important parameters for these

experiments were Dt ¼ 0.42 s (reached frame rate), Dt

ranging from 8 to 64DT, vdis ¼ 0, and vsat ¼ 255.

The learning phase performance has taken an average of

5 min for a sequence of 50, 256 £ 256 pixels image.

5.1. Study case 1

The first study case shows the capacity of our model to

separate moving objects from background. The pears and

nuts image sequence from the MOVI Image Base offers

complex motion to test segmentation algorithms. This

sequence contains images where the camera position and

orientation varies slowly from one image of a sequence to

the next one. Our neural network architecture is capable of

segmenting the images into figures and ground (Fig. 9). Of

course, this segmentation capacity may be considered as

trivial, as the background is black. But, this is just one

possibility of our implementation. Next cases will show

more possibilities of our method.

Fig. 12. (a) Road-traffic monitoring image; (b) result after Layer 3; (c) high-level processing.

Fig. 13. (a) An image of the traffic intersection sequence at the Ettlinger-Tor in Karlsruhe; (b) result after Layer 3.
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5.2. Study case 2

Objects as a Chocos cereal box performing complex

motion (rotations) may be segmented in its constituent parts

by means of our lateral interaction in accumulative

computation (Fig. 10). Again, this sequence contains images

where camera position and orientation varies slowly in a

complex way (translation plus rotation) from one image of a

sequence to the next one. This study case shows the

versatility of our implementation for segmenting moving

elements as a whole or as segmenting moving elements

constituent parts. The degree of decomposition depends on

the set of values used in a specific implementation. In this

case, the results obtained are probably non-sense. This way,

we show the importance of the learning algorithms to adapt

the method’s parameters correctly. Notice that by varying

the values of the method’s parameters it is possible to get

more or less details of the object’s parts. Thus, we might

offer as result of our motion detection algorithms a wide

range of possibilities, going from simple image difference

(pixels that have moved from one image to the next) up to

object silhouettes.

5.3. Study case 3

The third study case shows the robustness of our

architecture for discriminating objects from the motion of

the entire environment. In this sequence (Sun glasses

over printed paper), the camera position varies slowly

from one image of a sequence to the next one by

performing a linear translation along the optical axis.

This discrimination, as already mentioned, is related to

the connectivity of the constituent parts of the objects.

Fig. 14. (a) A man walking in a laboratory; (b) result after Layer 1; (c) result after Layer 2; (d) result after Layer 3.
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The sunglasses from camera motion are perfectly

segmented (Fig. 11).

5.4. Study case 4

Evidently, when testing our proposed model with images

with a quite static background, the results are astonishingly

good. A stationary camera on a highway permits to obtain

all vehicles running on the scene (Fig. 12). When adding

high-level processing dependent on the kind of application,

the neural architecture may be exploited with excellent

results (Fig. 12(c)). As our architecture is independent from

image understanding, it may be used for many different

image analysis applications.

5.5. Study case 5

Next, we offer the results obtained for the traffic

intersection sequence recorded at the Ettlinger-Tor in

Karlsruhe by a stationary camera.

This example shows the usefulness of our neural

architecture for traffic monitoring in complex intersection

situations. Note also that there is a lot of noise due to the

vibration of the stationary camera. Nevertheless, the results

are excellent. Fig. 13(a) shows one image of the sequence.

You can observe the existence of ten cars and one bus

driving in three different directions. At the bottom of the

image there is another car, but this one is still. Fig. 13(b)

shows the result of applying our model to some images of

Fig. 15. (a) A METEOSAT satellite image; (b) result after Layer 1; (c) result after Layer 3.

Table 2

Comparison to other approaches

Approach Description/comparison Reference

Image difference approaches Up to some extent, our method can be generically classified into the models

based on image difference. But our method is much stronger than simple

image difference, and even cumulative image difference. Compared to both

algorithms, our lateral interaction in accumulative computation model

offers more accurate and less noisy results

Fernandez and Mira (1992) and Simoncelli

(1993)

Gradient-based approaches The gradient-based estimates have become the main approach in the

applications of computer vision. These methods are computationally

efficient and satisfactory motion estimates of the motion field are obtained.

Unfortunately, the gradient-based methods always present some

restrictions, but our method does not. The disadvantages common to all

methods based on the gradient also arise from the logical changes in

illumination. The intensity of the image along the motion trajectory must be

constant; that is to say, any change through time in the intensity of a pixel is

only due to motion. This restriction does not affect our model at all

Fennema and Thompson (1979), Horn and

Schunck (1981), Lawton (1989) and Marr

and Ullman (1989)

Region-based approaches These approaches work with image regions instead of pixels. In general,

these methods are less sensitive to noise than gradient-based methods. Our

particular approach takes advantage of this fact and uses all available

neighbourhood state information as well as the proper motion information.

On the other hand, our method is not affected by the greatest disadvantage

of region-based methods. Our model does not depend on the pattern of

translation motion. In effect, in region-based methods, regions have to

remain quite small so that the translation pattern remains valid

Adams and Bischof (1994), Horowitz and

Pavlidis (1976), Revol and Jourlin (1997)

and Zucker (1976)
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the traffic intersection sequence. As you may observe, the

system is perfectly capable of segmenting all the moving

elements present on Fig. 13(a).

5.6. Study case 6

Our system has also been tested as a visual surveillance

tool. Fig. 14 shows the possibility of obtaining the

silhouettes of people walking through a scene.

5.7. Study case 7

Note the versatility of our architecture. Any high-level

application founded basically on motion detection can make

use of our lateral interaction in accumulative computation

model in its low-level stages. Here we offer the possibility to

manage satellite images (Fig. 15).

6. Discussion

A model based on a neural architecture close to biology

has been proposed in this paper. A simple algorithm of

lateral interaction in accumulative computation is capable

of detecting all rigid and non-rigid moving objects in an

indefinite sequence of images in a robust and coherent

manner. The method has been tested on a wide range of real

images. The results are especially relevant when applied to

image sequences taken from a stationary camera. In fact,

only very simple segmentations can be achieved when using

a moving camera. A general comparison to other

approaches is offered in Table 2.

Compared to all other approaches, our proposed model

has no limitation in the number of non-rigid objects to

differentiate. Our system facilitates object classification by

taking advantage of the object charge value, common to all

pixels of the same moving element. Thanks to this fact, any

higher-level operation will decrease in difficulty.

We conclude stating that the proposed neuronal lateral

interaction in accumulative computation mechanisms offer

an excellent tool for image segmentation as a first approach

to pattern recognition. Currently, we are studying the

usefulness of our algorithms for very different real world

applications such as traffic monitoring, people surveillance,

and medical imaging.
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de Automática, 5, 7–17.

Morrone, M., Burr, D., & Vaina, L. (1995). Two stages of visual processing

for radial and circular motion. Nature, 376, 507–509.

Mountcastle, V. B. (1979). An organizing principle for cerebral function:

The unit module and the distributed system. In F. O. Schmitt, & F. G.

Worden (Eds.), The neuroscience fourth study program (pp.

1115–1139). Cambridge, MA: MIT Press.

Revol, C., & Jourlin, M. (1997). A new minimum variance region growing

algorithm for image segmentation. Pattern Recognition Letters, 18,

249–258.

Ross, W. D., Grossberg, S., & Mingolla, E. (2000). Visual cortical

mechanisms of perceptual grouping: Interacting layers, networks,

columns, and maps. Neural Networks, 13, 571–588.

Sekuler, R., & Blake, R. (1994). Perception. New York: McGraw-Hill.

Sereno, M. E. (1993). Neural computation of pattern motion. Cambridge,

MA: MIT Press.

Shizawa, M. (1992). On visual ambiguities due to transparency in motion

and stereo. Lecture notes in computer science, 599, 411–419.

Simoncelli, E. P (1993). Distributed representation and analysis of visual

motion. PhD dissertation, MIT.

Tekalp, A. M. (1995). Digital video processing. Englewood Cliffs, NJ:

Prentice Hall.

Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA:

MIT Press.

Wallach, H. (1976). On perceived identity: 1. The direction of motion of

straight lines. In H. Wallach (Ed.), On perception. New York:

Quadrangle.

Wimbauer, S., Gerstner, W., & van Hemmen, J. L. (1994). Emergence of

spatio-temporal receptive fields and its application to motion detection.

Biological Cybernetics, 72, 81–92.

Yuille, A. L., & Grzywacz, N. (1988). A computational theory for the

perception of coherent visual motion. Nature, 333, 71–74.

Zucker, S. W. (1976). Region growing: Childhood and adolescence.

Computer Graphics and Image Processing, 5, 382–399.

A. Fernández-Caballero et al. / Neural Networks 16 (2003) 205–222222


	On motion detection through a multi-layer neural network architecture
	Introduction
	Biological motion detection
	Problem statement

	Our approach: lateral interaction in accumulative computation
	Lateral interaction models
	Accumulative computation model
	Double time scale

	The multi-layer architecture
	Layer 0: segmentation by gray level bands
	Layer 1: lateral interaction for accumulative computation
	Layer 2: lateral interaction for charge redistribution by gray level bands
	Layer 3: lateral interaction for moving object fusion

	Learning algorithm in lateral interaction in accumulative computation
	Results
	Study case 1
	Study case 2
	Study case 3
	Study case 4
	Study case 5
	Study case 6
	Study case 7

	Discussion
	Acknowledgements
	References


